Project Report: An Smart Building Design Slide Generator Based on RAG

Yiyang Pan
University of Wisconsin Madison
pan248@wisc.edu

Abstract

This paper provides a general overview of de-
signing a simple slide generator for the Smart
Building Design industry using language mod-
els.

1 Introduction

With the rapid growth in the field of natural lan-
guage processing, many everyday tasks can be au-
tomated using a combination of tools such as lan-
guage models and plugins. This project aims to
meet the need for automating the daily procedures
of Smart Building Systems Designers by creating
systems that generate slides according to clients’
needs.

2 Problem Statement

Creating design plans for different projects is one of
the most time-consuming tasks for smart building
systems designers. Typically, the design consists
of a 100-page slide deck with detailed descriptions,
including background information, needs analy-
sis, system design plans, required equipment, and
past experiences on similar projects. Even though
specific project details, such as the area covered,
may differ, many plans share a significant amount
of similar information. As we develop an online
database to help new designers find past projects
for reference, we aim to take it a step further by au-
tomating the draft generation process. This would
provide designers with a nearly complete plan, thus
streamlining their workflow.

3 Aims and Objectives

The goal of this project is to develop a system
that can automatically generate new slides based
on user input. The new design should be profes-
sional and adhere to the industry standards of smart
building systems design; therefore, the entire slide
deck should follow a certain format and logical

flow. The design plan should also be consistent
with the user’s input and the content of past docu-
ments, with each slide having a clear central topic.
Finally, given that many of the required documents
are under copyright protection, the process must be
able to run locally within a reasonable time frame.

4 Solution Approach

4.1 Overview

We designed a slide generation tool demo. First,
we preprocess the document into markdown format,
then segment the sentences according to length, em-
bed the text into vectors using embedding models,
and store them in a vector database. After this, the
server is set up. Upon user input, the frontend calls
the server’s API to generate results.

4.2 Pre-processing and File Loader

Since most past documents are in PPT format, we
initially considered using the python-pptx tool to
load them directly without preprocessing. However,
we discovered that this method often combined
loosely related text from multiple pages, which is
not ideal. By preprocessing the slides into mark-
down, we can add breaks for each page, include
page numbers, and detect page titles. The prepro-
cessed markdown files are then used for segmen-
tation. Additionally, the preprocessing process is
synchronized with the original file, meaning any
additions, edits, or deletions in the original file are
reflected in the markdown file.

4.3 Text Segmentation and Embedding

After starting the server, we load the preprocessed
markdown files along with other types of files us-
ing a universal loader. When reading from mark-
down, we separate text into chunks from each slide
page to maintain the original boundaries. We chose
the lightweight all-MiniLM-L6-v2 model from the
GPT4ALL library for simplicity. After embedding,

the data is stored in the Chroma database locally,
prepared for later RAG processing(a20, 2024).

4.4 Model Choice for Content Generation

We examined the behavior of three small language
models: Llama 3: 8b from Meta, Phi-3: 3b from
Microsoft, and Qwen2: 7b from Alibaba Group.
All three models demonstrated good semantic abil-
ity, but since our project primarily deals with the
Chinese language, we chose Qwen?2 for its superior
Chinese language capabilities.

4.5 Template and Chain Design

We designed six different chains for various pur-
poses:

* The outline chain for designing slide outlines
based on user input prompts, assisted by gener-
ated background information and RAG. After
the user modifies and confirms the outline con-
tent, each item in the outline is passed to the
next chain to generate content based on previ-
ous documents, ensuring professionalism and
reducing hallucination.

* A chain to generate titles for the entire presen-
tation and each slide. The title for the overall
presentation is passed into the content chain
along with the outline segment to ensure it re-
mains on topic, especially for generating con-
tent like the project background and previous
examples. Titles for each slide are generated
after the content is finalized to provide a good
overall summary.

* The fifth chain formats the output according
to the design, but since it needs to output the
entire slide content with minor changes, it
is time-consuming and wasteful of computa-
tional resources. Therefore, we use a regular
formatting template instead.

* The last chain summarizes the page content
into keywords, which are then used to look up
pictures using the Unsplash API. This makes
pages with less content more visually appeal-
ing.

4.6 Frontend, Slide Backend, and APIs

For testing purposes, we built a simple web server
including a single HTML page for API testing, as
well as outline parsing and editing features. For
this demo, we chose to use Slidev(Fu, 2020), an

(/) Generated Info
Outline

User Input RAG

L{ User Modification }_[:
|—> Page content ~ ----- >

I

RAG
Page title J—)

I |

e

Figure 1: Chain design for the slide generator

Doc title

open-source presentation slide maker, as it uses
simple markdown grammar to format output with
elegant templates and strong built-in tool support
based on Node.js. This is intuitive for developers
and can later be implemented to support various
charts, animations, and embedded tools using only
a few lines of code, which language models excel
at. If needed, we can later replace it with slide
modification tool APIs.

5 Results

Overall, the project results were ideal. The slide
maker is able to generate the outline locally within
one minute on an Apple M1 chip with 16GB of
unified memory. The content is generally relevant,
including background information, plans, previous
similar projects, and conclusions. Each page has its
central topic, and the generator can produce related
content without going off-topic. However, some-
times the generated content may be duplicated or
overlap across different slides. We can address this
by adding memory capabilities to the application
in the future.

6 Discussion and Analysis

During this project, we specifically analyzed the
best way to use language models for slide genera-
tion. Unlike essays and other documents, which are
composed paragraph by paragraph with continuous
semantic meaning, the content in slides is more
isolated. Instead of organizing words into lengthy
paragraphs, slides are more likely to be composed
of short paragraphs, bullet points, charts, graphs,
and pictures.

6.1 Limitations of Smaller Language Models

Current models prefer long, continuous paragraphs.
For example, when generating an outline, the
model tends to generate an introductory paragraph
and a concluding paragraph along with the required

bullet points, necessitating post-processing to ex-
tract the correct parts.

For content generation, the model often pro-
duces essay-like paragraphs, which are challenging
to present on a single slide and not preferred by
viewers. We addressed this issue using prompt en-
gineering techniques to specify the length of the
result. Using phrases like “give 1-3 sentences”
proved more effective than “give no more than 3
sentences,” as the latter seemed to have no effect.
Our hypothesis is that smaller models struggle with
vague terms such as “about,” “no more than,” and
“at most.”

Describing output format is also a challenge
for prompt engineering. Smaller models, like
Qwen2, often struggle to adhere to specified for-
mats. For example, when prompted to “use mark-
down format... do not include titles,” the output
still frequently contains titles. This issue may relate
to prompt engineering techniques, which suggest
avoiding negative instructions and instead directly
telling the model what to do.

We attempted to solve this problem by providing
examples, but another issue arose: the model some-
times treated the example content as the “content”
retrieved by the RAG step or “context.” After sev-
eral attempts, we ended up not specifying examples
and formatting requirements. This way, the model
mostly outputs plain text and markdown-style lists.
We then use code to inject formatting phrases into
the output, providing a more reliable result.

Another problem when designing prompts for
smaller models is deciding whether to separate the
process into smaller steps or build a more com-
plex prompt to achieve the goal at once. For more
complex prompts, one problem is consistency. We
discovered that when using complex prompts with
smaller models, sometimes the model can achieve
the goal, but often it just goes off-topic. However,
when dividing the process into smaller steps, some-
times it just repeats the previous result with minor
modifications. If the result is large, this will be a
very time-consuming process.

After experiencing various combinations, we dis-
covered that it is better for smaller models to gener-
ate a small step at a time. To speed up the process,
we let models output only a short paragraph in the
process before the final generation and move the
task of formatting to traditional pattern matching
algorithms. This keeps the process fast with more
stable output formats shaped by each step in the
chain.

6.2 Different Methods of Text Segmentation

Given the different form factors of slides, the re-
trieval process is crucial. Most of the time, text
extracted directly from slides does not make much
sense without the original format. We addressed
this problem by using attributes such as text size
and properties to tag text as “title.” Also, content
on one slide is supposed to be related even if it does
not share similar semantic meaning. We compared
using regular text splitters and semantic splitters,
finding that the regular splitter outperformed the
semantic splitter. To further improve retrieval re-
sults, we added separators during the preprocessing
of PPT files. When splitting, we only segment the
content of each slide. In many cases, the chunk
size is large enough to contain all the information
from the slide, allowing the retriever to access all
related text content from that slide.

7 Conclusion and Future Work

The final version of the demo can provide detailed,
professional outlines and related content at a de-
cent speed. This system can significantly aid smart
building system designers in enhancing their work
efficiency. Designers can then edit based on the
generated content.

There is still much that can be improved in the fu-
ture. For one, when building the RAG component,
we can further explore the file loader to improve
the quality and relevance of the input data. We can
also experiment with different file loaders. There is
much more to discover in languages other than En-
glish for these two parts. Additionally, to improve
the quality of the generated content, we can add
memory to the process to make the content more
consistent. Lastly, we can experiment with differ-
ent models (especially larger models) and fine-tune
them for better results.

References

2024. rag-chroma-private | langchain.

Anthony Fu. 2020. Slidev.

https://python.langchain.com/v0.2/docs/templates/rag-chroma-private/
https://sli.dev/

	Introduction
	Problem Statement
	Aims and Objectives
	Solution Approach
	Overview
	Pre-processing and File Loader
	Text Segmentation and Embedding
	Model Choice for Content Generation
	Template and Chain Design
	Frontend, Slide Backend, and APIs

	Results
	Discussion and Analysis
	Limitations of Smaller Language Models
	Different Methods of Text Segmentation

	Conclusion and Future Work

